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Compact Binaries

Recap: evolution of normal stars

Evolutionary tracks of single stars with masses 
from 0.8 to 150M. The slowest evolution is in 
the hatched regions
(Lejeune T, Schaerer D Astron. Astrophys. 366 
538 (2001))

Timescale for star on Main Sequence
(burning hydrogen in the core):

TMS =  (MMS /Mʘ )-2.5 1010 y 

A  5Mʘ  star evolves off the M-S after ~180 Myr
A 10Mʘ  star evolves off the M-S after ~30 Myr
A 50Mʘ  star evolves off the M-S after ~0.5 Myr

Binary star evolution very much governed by mass too
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Compact Binaries

Mass loss stages

Evolution of a 5M star in a close binary
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Compact Binaries
Evolution of close binaries

(Postnov, Yungelson 2007)
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Compact Binaries

Non-conservative evolution:
Common envelope stage 
(B.Paczynski, 1976)

Problem: How to make close binaries
with compact stars (CVs, XRBs)?
Most angular momentum from the 
system should be lost.

Common envelope

Dynamical friction is important
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Compact Binaries
Basic Equations

Keplerian orbit: 

Angular frequency:

v

r

M

m

Angular momentum: 

Kinetic energy: 

Keplers law: 
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Compact Binaries
Orbit of a test particle in a gravitational field of a binary

Gas flow between two stars governed by Euler equation  
(momentum conservation):

In the binary reference frame consider: 

Roche approach 

Test particle in the gravitational potential of 2  orbiting bodies (M1 and M2)

Assumptions: 
1) Massive stars         their orbits not perturbed (Restricted 3-body problem)
2) Circular orbits
3) Stars centrally condensed             point masses     

f/ ρ = - Ф – 2ω x v

∆

Coriolis termGravitational + centrifugal term

Pressure force  + Grav. + 
centrifugal + Coriolis
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Compact Binaries

Equipotential lines in binary stars

x

y

z

amass ratio

Roche potential:

Edouard Roche (1820-1883)

Joseph Lagrange (1736-1813)

Centrifugal termGravitational terms
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Compact Binaries
The Roche potential: equipotential lines

5 “Lagrangian” points:

1 Rsun
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Compact Binaries

• L1 - Inner Lagrange Point

– in between two stars

– matter can flow freely from one star to other

– mass exchange

• L2 - on opposite side of secondary

– matter can most easily leave system

• L3 - on opposite side of primary

• L4, L5 - in lobes perpendicular to line joining binary

– form equilateral triangles with centres of two stars

• Roche-lobes: surfaces which just touch at L1

– maximum size of non-contact systems

L1 – L3 are unstable, i.e. a small perturbation will lead the material to leave the 
L-point; L4&5 are stable, i.e. material will return to its initial position following a 
small perturbation

Lagrange points

L1: SOHO

Earth-Sun 

L2: Gaia, Herschel, JWT 
same orientation Sun-Earth
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Compact Binaries
Jupiter-Sun: Trojan asteroids in L4&5
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Compact Binaries
The Roche potential: scale and shape

the shape of the 
equipotential lines 
depends only on q

the dimension of the 
system depends the
binary separation a
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Compact Binaries

The Roche potential

x
y

z
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Compact BinariesBinary configurations and mass transfer

Semidetached: mass transfer via Roche
lobe overflow (RLOF)

(most of the compact binaries, LMXBs, CVs)

Contact 
(W UMa systems, 2 normal stars, 
not relevant for X-ray astronomy)

Detached: mass transfer via wind
(High mass X-ray binaries HMXBs, Symbiotics)
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Compact Binaries
Roche lobes: useful equations

volume-equivalent radius of the 
secondary star Roche lobe

0.1≤ q ≤ 10   2% accuracy   (Paczynski 1971)
RL(2)       q

a             1+q=  0.462 [  ] 1/3

__
a

__
a
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Compact Binaries

Angular momentum in a mass-transferring binary
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Compact Binaries

Mass transfer and angular momentum conservation

conservative mass transfer: 

angular momentum is conserved:

orbit expands

orbit shrinks

22 March 2023 17



Compact Binaries

Stable and unstable mass transfer
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Compact Binaries
Accretion rate and luminosity

Accretion rate:

Accretion luminosity:

Example 1: accretion onto a neutron star with 

Example 2: accretion onto a supermassive black hole with 

or  [g s-1]

or  [erg s-1]

.
m = LR

GM
= 7.4 x 1013 kg s-1= 1.2 x 10-9 Mּס yr-1

(M=108 Mּס , R=3x1011 m)

= 1037 erg s-1

= 5 x 1046 erg s-1

Accretion in a binary can be
sustained over long
timescales
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Compact Binaries
Formation of a white dwarf/main sequence binary
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Compact Binaries
Binaries with compact components

Semi-detached systems, with mass transfer

M2 companion WD NS BH

WD AM CVns
~30

LMXBs
<101

NS [GW sources 
(kilonovae)]

[GW sources]

BH [GW sources]

MS, M2 < M0 CVs ~3000 LMXBs
~200

LMXBs
few tens

MS, M2 > M0 SSS HMXBs
150

HMXBs
few

Giant Few CVs, Symbiotics Few LMXBs Few LMXBs

Supergiant about 200

SSS: Supersoft X-ray sources; L/HMXB: Low/High-mass X-ray binary
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Compact Binaries
Compact WD Binary taxonomy
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Compact Binaries
Accretion mode

RLOF
RLOF

Wind
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Compact Binaries
Accretion disks: formation

transport of
• M inwards/outwards
• L outwards

(the other half: boundary layer
between  disc and star)
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Compact Binaries
The circularisation radius

RL1

Rcirc angular momentum conservation:

Roche-lobe radius of primary:

Example: 

mass ratio:

RL1 = 0.58a
If   R1 ≤  rc ≤ RL1 Ring spreads into disc (spiral in and outward)
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Compact Binaries
Accretion Disk Temperatures

For an optically thick disk, the luminosity is determined by the summed 
blackbody emission as a function of disk radius

The R-3/4 temp law
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Compact Binaries

Radial temperature profile: simple approach

Taylor expansion:

and

properly done (Spruit 2010): More generally:
T(r) ∞ r-ß 

Real accretion discs have 0 ≤ ß ≤ 1

(see Spruit 2010, arXiV:1005.5279)    

Accretion luminosity: 

Optically thick disc:
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Compact Binaries
Maximum temperature of the disc

to find the maximum of y

“characteristic disc temperature”
:

substitute

and
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Compact Binaries
Accretion Disk Temperature
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Compact Binaries
Spectra of accretion discs: 

summing blackbodies

blackbody intensity

(1) 

(2)

(3) intermediate case

Rayleigh-Jeans tail 

Wien tail 
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Compact Binaries
Spectra of accretion discs: 

summing blackbodies

Spectrum of an optically thick accretion disk (arbitrary units). 

Typical outer disk temp = 0.01 T*

Temperature  > 

Fl
ux

 >
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Compact Binaries

Spectra of accretion discs: summing blackbodies
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Compact Binaries
Accretion disc turbulence

• Matter spirals into gravitational potential of accreting object
• Energy is extracted as radiation

Dissipation process converts kinetic energy into heat

Transport of  mass and angular momentum due to chaotic turbulent process (Kolmogorov)
known as shear viscosity
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Compact Binaries

Mass and angular momentum transported in the disc due to friction between layers due to 
chaotic process known as viscosity (Shakura & Sunyaev 1973)

ν : kinematic viscosity coefficient

α : viscosity parameter  α ≤ 1  
(Shakura & Sunyaev 1973) no prescription 
Turbulence driven by MRI instability (Balbus&Hawley1991)
Hot discs: α ≈  0.1-0.4 (King, Pringle, Livio 2007)
Cool discs:α ≈ 0.02-0.04 (Hamuery et al. 1998)   
Viscosity also dissipates kinetic energy:

M
·

= -2pRV
R
å     (S = 2rH )

1
1 / 23

1 ( )
2

in
R

R
V

R R

 -
 = - -  

V
R
<<V

k
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k
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M Mass transfer rate

Keplerian & drift velocities

Heating rate per unit surface: 
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·
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R

Transport of mass and angular momentum

Stability condition    =

H
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Compact Binaries
Vertical structure of accretion discs

r
z

M

g

(ideal gas)

with the scale height

(gravitational potential)

Hydrostatic equilibrium in z-direction:
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Compact Binaries
Accretion disc model spectra

TLUSTY – Model atmosphere disc spectra  (Hubeny et al. 1998) 
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Compact Binaries
Emission from the boundary layer

ω* << ωbreakup
WD  ≈ 10 sec
NS     0.3msec

b << H << R
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Compact Binaries
The Boundary Layer

shock Temperature

Teff,bl ~ Td (Ts/Td )1/8 Ts =  3/8 GM μ mH/kR

1) White dwarf: M = 0.85 Mּס R = 6.6x106m ṁ = 1.6x10-10 Mּס/yr

Teff,bl= 130000 K

λT= 0.0029 mK λ= 22nm (EUV)

2) Neutron Star: M = 1.4 Mּס R = 10km ṁ = 1.6x10-10 Mּס/yr

Lbl = 9.5 x 1028 J s-1

E ≈ 7keV  (hard X-rays)

Teff,bl= 8.5x107 K
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Compact Binaries BUT:
Boundary layer may become optically thin at low-intermediate mass transfer rates

ṁ ≤ 10-9 Mּס/yr 

Electrons hotter than photons  cooling via Compton scattering

Hot Boundary layer may expand spherically 
X-ray Spectra:  
Absorbed multi-color blackbody disc  (kTin = 1.2keV)   + 
Comptonized component (kTe=26keV; τ=3.3 - spherical ) + 
Gaussian line 6.4keV

1E1724-3045
a LMXB in Terzan 2

RXTE Data

(Barret et al. 2000)
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Compact Binaries
Accretion Disk Winds

• Boundary layer the final transition of accreted material to the accretor
– At high mass transfer rates it is optically thick and hot, with a thermal SED
– Typical  TBL ~200,000 K (UV emitter) which is 6 x Tdisk (max)
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Compact Binaries
Accretion Disk Winds

• At low mass transfer rates (< 5 x 1010 Mʘ /yr) it is optically thin
• Dominant  cooling  through bremsstrahlung X-ray emission
• Low density => few collisions => inefficient cooling
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Compact Binaries
Accretion Disk Winds

• Optically thin BL form an expanded diffuse corona with T ~108 K
• “siphon” effect where accreted material looses gravitational energy

• Keeps pumping E into corona, keeping it hot
• Corona evaporates the disk, replenishing the accreted material from the corona
• Energetic photons (X-rays) can drive away some accreting material in a wind
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Compact Binaries

Observing Wind Outflows

• Energetic photons from the BL can be 
absorbed by ions and atoms

• Energy matches electron transitions 
from ground state to next highest 
level

• Excitation
• Excited ion/atom de-excites, emitting 

photon
• The process is know as “resonance 

transitions”
• Because of the random direction of 

emitted photon, it “scatters” photons 
• Lead to absorption along the line of 

sight
• Spectra lines can take on “P Cygni” 

line profile shapes
• Radiation drive wind
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Compact Binaries
Observing Wind Outflows

• Resonances lines from hot BL or disk 
are most easily seen in the UV
– UV resonance lines

• So P Cyg profiles produced in hot 
winds are seen in Novalike CVs (e.g. 
hot bright disks) or Dwarf Novae in 
outburst (hot boundary layer/disk)

• Remaining questions:
– Does wind primarily originate in BL or 

inner disk (where Keplerian velocity is 
higher)?

– Role of disk magnetic fields (slingshot) ?
– How bi-polar is the flow?
– How symmetrical ?
– How much mass is driven off ?

• Results from computational models
• Will come back to winds in X-ray 

binaries
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WX Hyi in quiescence (lower) and 
outburst (upper)



Compact Binaries
Disk-Stream Impacts

• Canonical accretion disk models 
include emission from the hot/bright 
spot on the outer edge where 
accretion stream impacts

• The hot-spot can emit a significant 
amount and is much hotter than the 
surrounding

• Depending of dM/dt through the L1
point, stream can cause material in 
disk to “puff up”, i.e. extend well 
above the disk
– Evidence from “dips” in light curves

• Stream can also overflow the disk 
and penetrate further, perhaps 
causing secondary impact regions
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Compact Binaries

SW Sex stars

• Evidence of stream-disk overflow 
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Compact Binaries

SW Sex stars
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Compact Binaries
SW Sex stars

• Radial Velocities out of phase 
with eclipse

• Phase-dependent absorption 
components in emission lines
– i.e. lines become double peaked
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Compact Binaries
SW Sex stars

• Complex emission lines structures with off-set RV curves compared to eclipse
• High velocity “zig zag” explained as either

– modulation could be due obscuring of inner disk (high velocity) regions, by the outer 
asymmetrically flared disc rim

– stream penetration into inner disc where stream absorbs light from disk
– new impact stream-disk impact region would appear to show and absorption line S-

wave
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Compact Binaries
SW Sex stars

• Emission lines are mostly single-peaked
• Suggestion that they arise in a disc wind, which is evidenced in P Cyg profiles 

seen in some systems (e.g.  V1315 Aql below)
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Compact Binaries
SW Sex stars

• Doppler tomography shows evidence of disk, wind & stream
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Compact Binaries
SW Sex stars

• Current belief is that all novalike CVs evolving from longer -> shorter orbital 
periods pass through a “SW Sex” phase.

• Not so obvious in low inclination systems, since harder to see obscuration 
effects
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Compact Binaries
SW Sex stars

• Recent suggestion of possible connection to magnetic CVs
– White dwarfs with magnetic fields of  > 5 MG that can influence accretion
– About 33% of CVs

• Maybe SW Sex stars have magnetic WDs, but because of high 
dM/dt this buries the usual magnetic signatures?

• Part of the whole problem of missing magnetic WDs in post-
common envelope (detached) binaries

• Where are mCV progenitors ?
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Compact Binaries VY Scl stars: dipping Novalike CVs 
• A small fraction of Novalike CV (supposedly stable high dM/dt, optically thick 

accretion disks) show unexpected dips in their light curves (e.g. TT ari below)
• Different characteristic to Dwarf Novae (DNe)

– Deeper dips
– No quasi-periodic behaviour (as in the Z Cam DNe)
– Not disk o/b related (similar to some low states of mCVs where there are no disks

• Explanation suggested initially due to hot WD irradiating inner disk and keeping 
it stable and high dM/dt through disk, so empties quickly. 

• Change in state brought about by reduced mass loss through L1
– Perhaps due to star spots on the secondary star
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Compact Binaries
VY Scl stars: dipping novalikes

• New insights from observations with Kepler & TESS
• Example below MV Lyr covering ~50 yr (AAVSO) including 3.9 yr of Kepler

semi-continuous observations (bottom panels; Scaringi et al. 2017) 
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Compact Binaries
MV Lyr: Kepler data

• Periodicity of accretion gating is ~2 h (viscous timescale)

22 March 2023 56



Compact Binaries
Accretion gating

• Explanation for above behaviour is magnetism and accretion “gating”
• Build up of material just outside magnetosphere which eventually 

penetrates and is accreted 
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Compact Binaries

The End!
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